Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection.
نویسندگان
چکیده
Modulation of mitochondrial respiratory chain, dehydrogenase, and nucleotide-metabolizing enzyme activities is fundamental to cellular protection. Here, we demonstrate that the potassium channel opener diazoxide, within its cardioprotective concentration range, modulated the activity of flavin adenine dinucleotide-dependent succinate dehydrogenase with an IC50 of 32 microM and reduced the rate of succinate-supported generation of reactive oxygen species (ROS) in heart mitochondria. 5-Hydroxydecanoic fatty acid circumvented diazoxide-inhibited succinate dehydrogenase-driven electron flow, indicating a metabolism-dependent supply of redox equivalents to the respiratory chain. In perfused rat hearts, diazoxide diminished the generation of malondialdehyde, a marker of oxidative stress, which, however, increased on diazoxide washout. This effect of diazoxide mimicked ischemic preconditioning and was associated with reduced oxidative damage on ischemia-reperfusion. Diazoxide reduced cellular and mitochondrial ATPase activities, along with nucleotide degradation, contributing to preservation of myocardial ATP levels during ischemia. Thus, by targeting nucleotide-requiring enzymes, particularly mitochondrial succinate dehydrogenase and cellular ATPases, diazoxide reduces ROS generation and nucleotide degradation, resulting in preservation of myocardial energetics under stress.
منابع مشابه
Ubiquinol-cytochrome c reductase core protein 1 may be involved in delayed cardioprotection from preconditioning induced by diazoxide
This study aimed to use long-term diazoxide treatment to establish a loss-of-cardioprotection model and then perform proteomics analysis to explore which proteins of mitochondrial inner membrane (MIM) are potentially involved in delayed cardioprotection. Rats received 1 to 8 weeks of diazoxide treatments (20 mg•kg-1•d-1) to establish a loss-of-cardioprotection model in different groups. Detecti...
متن کاملDiazoxide acts more as a PKC-epsilon activator, and indirectly activates the mitochondrial K(ATP) channel conferring cardioprotection against hypoxic injury.
BACKGROUND AND PURPOSE Diazoxide, a well-known opener of the mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, has been demonstrated to exert cardioprotective effect against ischemic injury through the mitoK(ATP) channel and protein kinase C (PKC). We aimed to clarify the role of PKC isoforms and the relationship between the PKC isoforms and the mitoK(ATP) channel in diazoxide-induced...
متن کاملDiazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism.
Diazoxide, a selective opener of the mitochondrial ATP-sensitive potassium channel, has been shown to elicit tolerance to ischemia in cardiac myocytes and in perfused heart. However, the mechanism of this cardioprotection is poorly understood. Because reactive oxygen species (ROS) are recognized as important intracellular signaling molecules and have been implicated in ischemic preconditioning,...
متن کاملDiazoxide triggers cardioprotection against apoptosis induced by oxidative stress.
Although mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels have been reported to reduce the extent of apoptosis, the critical timing of mitoK(ATP) channel opening required to protect myocytes against apoptosis remains unclear. In the present study, we examined whether the mitoK(ATP) channel serves as a trigger of cardioprotection against apoptosis induced by oxidative stress. Apoptosi...
متن کاملOpening of mitochondrial KATPchannel induces early and delayed cardioprotective effect: role of nitric oxide.
Opening of mitochondrial ATP-sensitive (mitoKATP) channel with diazoxide induces an early phase (EP) of cardioprotection. It is unknown whether diazoxide also induces a delayed phase (DP) of cardioprotection. Because nitric oxide (NO) modulates ATP sensitivity of the KATP channel, we hypothesized that NO may play a role in diazoxide-induced cardioprotection. Diazoxide (1 mg/kg) was administered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 284 4 شماره
صفحات -
تاریخ انتشار 2003